PX153 - K10 - special matrices

symmetric and anti-symmetric matrices

A=(A+AT)+(AAT)2B=A+AT2=BT:symmetricC=AAT2CT=ATA2=C:antisymmetric

orthogonal matrices

singular matrices

hermitian conjugate matrix

A=(A)T=(AT)(a)ij=aji

hermitian or anti-hermitian matrices

A=12(A+A)+12(AA)B=12(A+A)=B:hermitianC=12(AA)C=12(AA)=C:antihermitian

unitary matrices

A=[0ii0]A=[0ii0]AA=[1001]=IAisunitary |λi|2=1λiλi=1 Uxi=λixiU1Uxi=U1λixi1λixi=U1xi1λixixi=xiUxi1λixixi=(Uxi)xi1λixixi=λixixi(1λiλi)(xixi)=0

- (xixi) cannot be 0:

1λiλi=0λiλi=1

- the modulus of eigenvalues is unity