PX153 - J8 - sine and cosine series

f(x)=a02+n=1ancos(nπxL)

for x[0,L)

f(x)=n=1bnsin(nπxL)

for x[0,L)

periodic extensions

finding the coefficients

0Lf(x)sin(nπxL)=nbn0Lsin(nπxL)sin(nπxL)dxletx=πxLdx=πLdx=bn0πL2π(cos((nn)x)cos((n+n)x))dx=nnbnL2π[sin((nn)x)nnsin((nn)x)n+n]0π+bnL2π[xsin((n+n)x)n+n]=bnL2bn=2L0Lf(x)sin(nπxL)dx an=2L0Lf(x)cos(nπxL)dxa0=2L0Lf(x)dx bn=2πcosxsin(nx)dx=2π0π12(sin((n+1)x)+sin((n1)x))dx=1π[cos((n+1)x)n+1cos((n1)x)n1]0π=1π[(1)n+1+1n+1+(1)n1+1n1]=1π[(1)n+1n+1+(1)n+1n1]

- for neven:

bn=1π(2n+1+2n1)=4nn21(1π)

- for nodd:
$$b_{n}=0$$

cosx=1π(83sin(2x)+1615sin(4x)+...)=n=14nn211πsin(nx),forneven