PX153 - J5 - symmetric and antisymmetric functions

proof of the anti-symmetric case

an=1πππf(x)cos(nx)dx=1π[π0f(x)cos(nx)dx+0πf(x)cos(nx)dx]letx=xdx=dx=1π[π0f(x)cos(nx)(dx)+0πf(x)cos(nx)dx]=1π[0πf(x)cos(nx)dx+0πf(x)cos(nx)dx]=0

proof for the symmetric case

an=1πππf(x)sin(nx)dx=1π[π0f(x)sin(nx)dx+0πf(x)sin(nx)dx]letx=xdx=dx=1π[π0f(x)(sin(nx))(dx)+0πf(x)sin(nx)dx]=1π[0πf(x)sin(nx)dx+0πf(x)sin(nx)dx]=0