PX153 - J3 - proofs and derivations

ππsinnxsinmxdx={0nmπn=m

(3)

ππcosnxcosmxdx={0nmπn=m

- trigonometric identities:
(a):cosαcosβ=12(cos(α+β)+cos(αβ))
(b):sinαsinβ=12(cos(αβ)cos(α+β))
(c):sinαcosβ=12(sin(α+β)+sin(αβ))

proofs of relations

(1)

I1=ππsinnxcosmxdx I1=12ππ(sin[(n+m)x]+sin[(nm)x])dx=12[cos[(n+m)x]n+mcos[(nm)x]nm]ππ=0I2=ππsinnxsinmxdx I2=12ππ(cos[(nm)x]cos[(n+m)x])dx I2=12[sin[(nm)x]nmsin[(n+m)x]n+m]ππ=0 I2=12ππ(1cos(2nx))dx=12[xsin(2nx)2n]ππ=π

(3)

I3=ππcosnxcosmxdx I3=12ππ(cos[(n+m)x]+cos[(nm)x])dx=12[sin[(n+m)x]n+m+sin[(nm)x]nm]ππ I3=0 I3=π

finding constants

f(x)=a02+n=1[ancos(nx)+bnsin(nx)] ππf(x)dx=[a0x2+n=1[ansin(nx)nbncos(nx)n]]ππ=a0πa02=12πππf(x)dx ππf(x)cos(mx)dx=[a0x2sin(mx)m]ππ+n=1(anππcos(nx)cos(mx)dx+bnππsin(nx)cos(mx)dx)=amπ

- because:

[a0x2sin(mx)m]ππ=0

- from relation (3):

ππcos(nx)cos(mx)dx={0nmπn=m

- from relation (1):

ππsin(nx)cos(mx)dx=0an=1πππf(x)cos(mx)dx ππf(x)sin(mx)dx=[a0x2cos(mx)m]ππ+n=1(anππcos(nx)sin(mx)dx+bnππsin(nx)sin(mx)dx)=amπ

- because:
$$\left[\frac{a_{0}x}{2} \frac{\cos(mx)}{m}\right]{-\pi}^{\pi}=0$$
- from relation (1):
$$\int
{-\pi}^{\pi} \cos(nx) \sin(mx) ,dx =0$$
- from relation (2):
$$\int_{-\pi}^{\pi} \sin(nx) \sin(mx),dx = \pi$$
for m=n

bn=1πππf(x)sin(nx)dx

summary

a02=12πππf(x)dxan=1πππf(x)cos(nx)dxbn=1πππf(x)sin(nx)dx f(x)=a02+n=1(ancos(nπxL)+bnsin(nπxL))a02=12πππ|x|dx=12π(0πxdx+π0xdx)=12π(20πxdx)=π2an=1π[π0xcos(nx)dx+0πxcos(nx)dx]letx=xdx=dx=1π[π0xcos(nx)(dx)+0πxcos(nx)dx]=1π[0πxcos(nx)dx+0πxcos(nx)dx]=1π[0πxcos(nx)dx+0πxcos(nx)dx]=2π0πxcos(nx)dx=2π[xsinnxn]0π2πsinnxndx=2π[cosnxn2]0π=2n2π((1)n1)an={4n2πnodd0nevenbn=1π[π0xsin(nx)dx+0πxsin(nx)dx]=1π[π0xsin(nx)dx+0πxsin(nx)dx]=1π[π0xsin(nx)(dx)+0πxsin(nx)dx]=1π[0πxsin(nx)dx+0πxsin(nx)dx]=1π[0πxsin(nx)dx+0πxsin(nx)dx]=0f(x)=|x|=π24π(cosx+cos3x9+cos5x25+...)