PX153 - J2 - convergence

fN(x)=a02+n=1(ancos(nx)+bnsin(nx))

for πxπ

minimum requirement (convergence in the mean)

limNfN(x)f(x)

at all πxπ

point-wise convergence

limNfN(x)=f~(x)=12(f(x+)+f(x))

- at discontinuities, the series converges to the midpoints

limNfN(π)=limϵ012[f(π+ϵ)+f(πϵ)]=limϵ012[f(π+ϵ)+f(πϵ)]

- so, the series converges at the average of the original function at the boundaries

uniform convergence