PX153 - J10 - examples

Q1

a0=1LLLf(x)dx=1102xdx=2an=02xcos(nπxL)dx=[xnπsin(nπx)]02021nπsin(nπx)dx=1(nπ)2[cos(nπx)]02=1(nπ)2(cos(2nπ)1)=0bn=02xsin(nπx)dx=1nπ([xcos(nπx)]0202cos(nπx)dx)=2nπ+[sin(nπx)(nπ)2]02=2nπf(x)=1+n=1(2nπ)sin(nπx)

Q2

a0=1πππcos(αx)dx=2π0πcos(αx)dx=2πα[sin(αx)]0π=2απsin(απ)an=1πππcos(αx)cos(nx)dx=2π0π12cos((α+n)x)+cos((αn)x)dx=1π[sin((α+n)x)α+n+sin((αn)x)αn]0π=1π(sin((α+n)π)α+n+sin((αn)π)αn)

Q3

f(x)={0x[π,π2)1x[π2,0)1x[0,π2)0x[π2,π) bn=1π(π20sin(nx)(dx)0π21sin(nx)dx+0)=1π(0π2sin(nx)dx0π2sin(nx)dx)=2π0π2sin(nx)=2π[cos(nx)n]0π2=2πn[cos(nπ2)1]0π2n=1,5,9,...:cos(π2)=0bn=2nπn=2,6,10,...:cosπ=0bn=4nπn=3,7,11,...:cos(3π2)=0bn=2nπn=4,8,12,...:cos(2π)=0bn=0

Q4

f(x)=x in [π,π)

f(x)=2sinx22sin(2x)+23sin(3x)24sin(4x)+...

Q5

f(x)=|x|=π24π(cosx+cos3x9+cos5x25+...) 0=π24π(1+19+125+...)π28=1+19+125+...π28=n=01(2n+1)2

Q6

f(x)=x=2sinx22sin(2x)+23sin(3x)24sin(4x)+... π2=2(113+1517+19+...)=n=0(1)n2n+1