PX153 - I4 - non-rectangular domain of integration

I=Rf(x,y).dx.dy=ab(y1(x)y2(x)f(x,y).dy).dx I=01(y1=xy2=xxy2.dy).dx

Pasted image 20240110184057.png
$$I = \int_{0}^{1} \left[ \frac{xy^{3}}{3} \right]{x}^{\sqrt{x}.dx}= \int^{1}(\frac{x^{\frac{5}{2}}}{3}- \frac{x^{4}}{3}).dx =...=\frac{1}{35}$$
- change the order of integration?
$$I= \int_{0}^{1}\left( \int_{x_{1}}^{x_{2}} xy^{2}.dx \right).dy = ... = \frac{1}{35}$$

I=(x1y+12x2=y+12(x+y)2.dx).dy=11((3y2+12)33(y212)33).dy=1

- can be verified by swapping the order of integration:
Pasted image 20240118155029.png
$$I = \int_{-1}^{0} \left( \int_{y_{1}=-2x-1}^{1} (x+y)^{2}.dy \right).dx + \int_{0}^{1} \left( \int_{y_{1}=2x-1}^{1} (x+y)^{2}.dy \right).dx$$
- the result must be 1

V=80a0π2A2A2sin2tAcost.dt.dx=80a0π2A2cos2t.dt.dx=80a0π2A22(cos2t+1).dt.dx=80aA22[12sin2t+t]0π2.dx=80aA22π2.dx=2π0a(a2x2).dxV=4π3a3