PX153 - I1 - introduction

definition

F(x)=limδx0F(x+δx)F(x)δx=limδx0Ax+δxf(x).dxAxf(x).dxδx=limδx0Ax+δxf(x).dx+xAf(x).dxδx=limδx0xx+δxf(x).dxδx=limδx0f(x)δxδx=f(x)

a bit of maths analysis

limδx0f(x+δx)f(x)δx=?f(x) limNn=0Nf(xA+nxBxAN)xBxAN=?xAxBf(x).dx

a) riemann integral
Pasted image 20240110183649.png

Ai=0N1f(xi)(xi+1xi) limNi=0N1f(xi)Δxi=0af(x).dx abudvdx.dx=abd(uv)dx.dxabvdudx.dx=[uv]ababdudxv.dx

- substitutions:
$$ I = \int \frac{1}{(1-x)^{\frac{1}{2}}}.dx$$
- let x=sinu , and dx=cosu.du :
$$I = \int \frac{\cos u.du}{\cos u} = \int du = u = \sin^{-1} x$$
\1\n\2\n