PX153 - H5 - coordinate systems revisited

ei^ej^=δij

Pasted image 20231205120403.png

e^r=cosθe^x+sinθe^ye^θ=sinθe^x+cosθe^y r=xe^x+ye^y ex=(rr)y=e^x

- ie: basis vectors are in direction of increasing coordinate

er=(rr)θeθ=(rθ)r r=xex+yey

- rewriting x and y :
$$\vec r = r \cos\theta ; \vec e_{x} + r\sin\theta ; \vec e_{y}$$

er=(rr)θ=cosθex+sinθey

- and,
$$\vec e_{\theta} = \left( \frac{\partial \vec r}{\partial \theta}\right){r} = -r \sin\theta ; \vec e + r \cos\theta ; \vec e_{y}$$

e^θ=eθr=sinθe^x+cosθe^y de^rdθ=sinθe^x+cosθe^y=e^θde^θdθ=cosθe^xsinθe^y=e^r