PX153 - H4 - application of gradient in physics - the potential of a conservative force

U(x,y,z)=q1q24πϵ0(2x2(x2+y2+z2)32i^y2(x2+y2+z2)32j^z2(x2+y2+z2)32k^) F=U(x,y,z) W=Flcosθ dW=Fdl W=ABF.dl l(t)=x(t)i^+y(t)j^+z(t)k^ W=tAtBFdldt.dt W=tAtBUdldt.dtW=tAtB(Uxdxdt+Uydydt+Uzdzdt).dt dUdt=Uxdxdt+Uydydt+Uzdzdt W=tAtBdUdt.dt=ABdU W=U(A)U(B)

- ie: work done does not depend on the the path for a conservative field