PX153 - H2 - visualising variability of a scalar function - contours

fr=fnnr=cosθfn f=(i^x+j^y)f dfdq=0

- this derivative can be rewritten as:
$$df = \frac{\partial f}{\partial x} dx + \frac{\partial f}{\partial y} dy \implies \frac{df}{dq} = \frac{\partial f}{\partial x} \frac{dx}{dq} + \frac{\partial f}{\partial y} \frac{dy}{dq}$$
- can write this as a scalar product:
$$\frac{df}{dq}= (\frac{\partial f}{\partial x},\frac{\partial f}{\partial y})\cdot ( \frac{dx}{dq}, \frac{dy}{dq})$$

dfdq=ft=0ft

\1\n\2\n