PX153 - E3 - driven damped simple harmonic motion

PX155 - D9 - driven damped simple harmonic motion

f(x)=A0eiωt

- often written as A0cos(ωt)

x¨+2αx˙+ω02x=A0eiωt

- we'll assume underdamped, so the complementary function is
$$x_{c}= e^{-\alpha t} (Ce^{i\omega't}+De^{-i\omega't})$$
- where, ω=ω02α2
- for the particular integral, our trial function is xp(t)=aeiωt
- a could be a complex number
ω2aeiωt+2αiωaeiωt+ω02aeiωt=A0eiωt
a(ω02ω2+2αiω)=A0
a=A0(ω02ω2)+2αiω
- a is a complex number
|a|=aa=A0(ω02ω2)+2αiω=A
arg(a)=tan1Im(a)Re(a)
arg(a)=ϕ=tan1(2αωω02ω2)
- find maximum of a and sketch
$$G.S. : x(t) = e^{-\alpha t} (Ce^{i\omega't} + De^{-i\omega't}) + Ae^{i(\omega t + \phi)}$$
- where, A=A0(ω02ω2)+2αiω and ϕ=tan1(2αωω02ω2)