PX153 - B5 - application - describing damped smh

general solution

md2xdt2=kxγdxdt d2xdt2+γmdxdt+kmx=0 d2xdt2+2αdxdt+ω02x=0

where, α=γ2m , ω0=km

λ2+2αλ+ω02=0

- quadratic equation, two solutions:
$$\lambda_{1}=-\alpha+\sqrt{\alpha^{2}-\omega_{0}^{2}} , ,, and , , \lambda_{2}=-\alpha-\sqrt{\alpha^{2}-\omega_{0}^{2}}$$
- the general solution:
$$x(t)=Ce^{\lambda_{1}t}+De^{\lambda_{2}t}$$
$$x(t)= e^{-\alpha t}(Ce^{t\sqrt{\alpha^{2}-\omega_{0}^{2}}}+De^{-t\sqrt{\alpha^{2}-\omega_{0}^{2}}})$$
- first, the damping/dissipative force acts to make the displacement decay over time (eαt, αR)
- three cases:
- case 1: α2<ω02 - PX153 - B5.1 - underdamping
- case 2: α2>ω02 - PX153 - B5.2 - overdamping
- case 3: α2=ω02 - PX153 - B5.3 - critical damping

Pasted image 20240105114744.png