PX153 - B5 - application - describing damped smh
general solution
- conder mass on a spring on a surface to give a friction force proportional to the speed of the mass
- the equation of motion becomes:
- rearrange:
- rewrite:
where,
- try
:
- quadratic equation, two solutions:
$$\lambda_{1}=-\alpha+\sqrt{\alpha^{2}-\omega_{0}^{2}} , ,, and , , \lambda_{2}=-\alpha-\sqrt{\alpha^{2}-\omega_{0}^{2}}$$
- the general solution:
$$x(t)=Ce^{\lambda_{1}t}+De^{\lambda_{2}t}$$
$$x(t)= e^{-\alpha t}(Ce^{t\sqrt{\alpha^{2}-\omega_{0}^{2}}}+De^{-t\sqrt{\alpha^{2}-\omega_{0}^{2}}})$$
- first, the damping/dissipative force acts to make the displacement decay over time (
- three cases:
- case 1:
- case 2:
- case 3:
