PX153 - A0

A1

vectors

v=|v|=vx2+vy2+vz2

- direction:

v^=v|v|

vector fields

A2

basis vectors

v=(v^x,v^y,v^z)=vxe^x+v2e^y+v3e^zv=i=x,y,zvie^i v^=vx|v|e^x+vy|v|e^y+vz|v|e^z

direction cosines

cosα=vx|v|,cosβ=vy|v|,cosγ=vz|v|

A3

position vectors

r(P)=(rx,ry,rz)

describing motion

position

r(t)=x(t)i^+y(t)j^+z(t)k^

velocity

v(t)=dr(t)dt

acceleration

a(t)=dv(t)dt=d2r(t)dt2

equations of motion in vector form

F=ma=mga=d2rdt2=gj^=dvdt...(i)v(t)=v0+0tdvdtdt=v0+0tgj^.dt...from[i]v=v0gtj^r(t)=r0+0tv(t).dt$$$$r(t)=r0+v0t12gt2j^

A4

vector operations

addition and subtraction

u±v=(ux±vx,uy±vy,uz±vz)

multiplication

scalar/dot product
s=uv s=uv=|u||v|cosθ s=uv=uxvx+uyvy+uzvz
vector/cross product
v=u×w \vec v = \vec u \times \vec w = (u_yw_z-u_zw_y)\underline{\hat i}+(\vec u_zw_x-u_xw_z)\underline{\hat j}+(\vec u_xw_y-u_yw_x)\underline{\hat k}$$or, ![Pasted image 20231009190210.png](/img/user/pics/Pasted%20image%2020231009190210.png) - cases: - if $\vec u$ and $\vec w$ are parallel, $\theta = 0$ and $\vec u \times \vec w = 0$ - if $\vec u$ and $\vec w$ are not parallel, $\vec u \cdot(\vec u \times \vec w) = 0$ - properties: - anti-commutative ## A5 ### coordinate systems - cartesian coordinates - polar coordinates $$(r,\theta)

where, r=x2+y2 ; θ=arctanyx
- basis vectors vary but are always orthonormal
e^r=cosθe^x+sinθe^y
e^θ=sinθe^x+cosθe^y

(r,θ,z) (θ,ϕ,r)

A6

scalar triple product

[u,v,w]u(v×w)

Pasted image 20231010175203.png

vector triple product

u×(v×w)u×(v×w)=(uw)v(u.v)w

A7

reciprocal vectors